Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell Rep Med ; 2(4): 100228, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-2247733

ABSTRACT

Considerable concerns relating to the duration of protective immunity against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) exist, with evidence of antibody titers declining rapidly after infection and reports of reinfection. Here, we monitor the antibody responses against SARS-CoV-2 receptor-binding domain (RBD) for up to 6 months after infection. While antibody titers are maintained, ∼13% of the cohort's neutralizing responses return to background. However, encouragingly, in a selected subset of 13 participants, 12 have detectable RBD-specific memory B cells and these generally are increasing out to 6 months. Furthermore, we are able to generate monoclonal antibodies with SARS-CoV-2 neutralizing capacity from these memory B cells. Overall, our study suggests that the loss of neutralizing antibodies in plasma may be countered by the maintenance of neutralizing capacity in the memory B cell repertoire.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19/pathology , Memory B Cells/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Asymptomatic Diseases , COVID-19/immunology , COVID-19/virology , Female , Humans , Limit of Detection , Male , Middle Aged , Neutralization Tests , Protein Domains/immunology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Time Factors , Young Adult
2.
Viruses ; 15(2)2023 02 13.
Article in English | MEDLINE | ID: covidwho-2240763

ABSTRACT

Australia experienced widespread COVID-19 outbreaks from infection with the SARS-CoV-2 Delta variant between June 2021 and February 2022. A 17-nucleotide frameshift-inducing deletion in ORF7a rapidly became represented at the consensus level (Delta-ORF7aΔ17del) in most Australian outbreak cases. Studies from early in the COVID-19 pandemic suggest that frameshift-inducing deletions in ORF7a do not persist for long in the population; therefore, Delta-ORF7aΔ17del genomes should have disappeared early in the Australian outbreak. In this study, we conducted a retrospective analysis of global Delta genomes to characterise the dynamics of Delta-ORF7aΔ17del over time, determined the frequency of all ORF7a deletions worldwide, and compared global trends with those of the Australian Delta outbreak. We downloaded all GISAID clade GK Delta genomes and scanned them for deletions in ORF7a. For each deletion we identified, we characterised its frequency, the number of countries it was found in, and how long it persisted. Of the 4,018,216 Delta genomes identified globally, 134,751 (~3.35%) possessed an ORF7a deletion, and ORF7aΔ17del was the most common. ORF7aΔ17del was the sole deletion in 28,014 genomes, of which 27,912 (~99.6%) originated from the Australian outbreak. During the outbreak, ~87% of genomes were Delta-ORF7aΔ17del, and genomes with this deletion were sampled until the outbreak's end. These data demonstrate that, contrary to suggestions early in the COVID-19 pandemic, genomes with frameshifting deletions in ORF7a can persist over long time periods. We suggest that the proliferation of Delta-ORF7aΔ17del genomes was likely a chance founder effect. Nonetheless, the frequency of ORF7a deletions in SARS-CoV-2 genomes worldwide suggests they might have some benefit for virus transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Australia/epidemiology , COVID-19/epidemiology , Disease Outbreaks , Pandemics , Retrospective Studies , SARS-CoV-2/genetics
3.
J Immunol ; 209(8): 1499-1512, 2022 10 15.
Article in English | MEDLINE | ID: covidwho-2055634

ABSTRACT

Phagocytic responses by effector cells to opsonized viruses have been recognized to play a key role in antiviral immunity. Limited data on coronavirus disease 2019 suggest that the role of Ab-dependent and -independent phagocytosis may contribute to the observed immunological and inflammatory responses; however, their development, duration, and role remain to be fully elucidated. In this study of 62 acute and convalescent patients, we found that patients with acute coronavirus disease 2019 can mount a phagocytic response to autologous plasma-opsonized Spike protein-coated microbeads as early as 10 d after symptom onset, while heat inactivation of this plasma caused 77-95% abrogation of the phagocytic response and preblocking of Fc receptors showed variable 18-60% inhibition. In convalescent patients, phagocytic response significantly correlated with anti-Spike IgG titers and older patients, while patients with severe disease had significantly higher phagocytosis and neutralization functions compared with patients with asymptomatic, mild, or moderate disease. A longitudinal subset of the convalescent patients over 12 mo showed an increase in plasma Ab affinity toward Spike Ag and preservation of phagocytic and neutralization functions, despite a decline in the anti-Spike IgG titers by >90%. Our data suggest that early phagocytosis is primarily driven by heat-liable components of the plasma, such as activated complements, while anti-Spike IgG titers account for the majority of observed phagocytosis at convalescence. Longitudinally, a significant increase in the affinity of the anti-Spike Abs was observed that correlated with the maintenance of both the phagocytic and neutralization functions, suggesting an improvement in the quality of the Abs.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Antiviral Agents , Humans , Immunoglobulin G , Receptors, Fc , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
4.
Rev Med Virol ; 32(5): e2381, 2022 09.
Article in English | MEDLINE | ID: covidwho-1935728

ABSTRACT

The first dominant SARS-CoV-2 Omicron variant BA.1 harbours 35 mutations in its Spike protein from the original SARS-CoV-2 variant that emerged late 2019. Soon after its discovery, BA.1 rapidly emerged to become the dominant variant worldwide and has since evolved into several variants. Omicron is of major public health concern owing to its high infectivity and antibody evasion. This review article examines the theories that have been proposed on the evolution of Omicron including zoonotic spillage, infection in immunocompromised individuals and cryptic spread in the community without being diagnosed. Added to the complexity of Omicron's evolution are the multiple reports of recombination events occurring between co-circulating variants of Omicron with Delta and other variants such as XE. Current literature suggests that the combination of the novel mutations in Omicron has resulted in the variant having higher infectivity than the original Wuhan-Hu-1 and Delta variant. However, severity is believed to be less owing to the reduced syncytia formation and lower multiplication in the human lung tissue. Perhaps most challenging is that several studies indicate that the efficacy of the available vaccines have been reduced against Omicron variant (8-127 times reduction) as compared to the Wuhan-Hu-1 variant. The administration of booster vaccine, however, compensates with the reduction and improves the efficacy by 12-35 fold. Concerningly though, the broadly neutralising monoclonal antibodies, including those approved by FDA for therapeutic use against previous SARS-CoV-2 variants, are mostly ineffective against Omicron with the exception of Sotrovimab and recent reports suggest that the Omicron BA.2 is also resistant to Sotrovimab. Currently two new Omicron variants BA.4 and BA.5 are emerging and are reported to be more transmissible and resistant to immunity generated by previous variants including Omicron BA.1 and most monoclonal antibodies. As new variants of SARS-CoV-2 will likely continue to emerge it is important that the evolution, and biological consequences of new mutations, in existing variants be well understood.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , Humans , SARS-CoV-2/genetics
6.
Front Immunol ; 12: 752003, 2021.
Article in English | MEDLINE | ID: covidwho-1468344

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have become a major concern in the containment of current pandemic. The variants, including B.1.1.7 (Alpha), B.1.351 (Beta), P1 (Gamma) and B.1.617.2 (Delta) have shown reduced sensitivity to monoclonal antibodies, plasma and/or sera obtained from convalescent patients and vaccinated individuals. Development of potent therapeutic monoclonal antibodies (mAbs) with broad neutralizing breadth have become a priority for alleviating the devastating effects of this pandemic. Here, we review some of the most promising broadly neutralizing antibodies obtained from plasma of patients that recovered from early variants of SARS-CoV-2 that may be effective against emerging new variants of the virus. This review summarizes several mAbs, that have been discovered to cross-neutralize across Sarbecoviruses and SARS-CoV-2 escape mutants. Understanding the characteristics that confer this broad and cross-neutralization functions of these mAbs would inform on the development of therapeutic antibodies and guide the discovery of second-generation vaccines.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Viral/blood , Antibody Specificity , Binding Sites, Antibody , Broadly Neutralizing Antibodies/blood , COVID-19/blood , COVID-19/virology , Cross Reactions , Host-Pathogen Interactions , Humans , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL